Cdk1-Clb4 controls the interaction of astral microtubule plus ends with subdomains of the daughter cell cortex.

نویسندگان

  • Hiromi Maekawa
  • Elmar Schiebel
چکیده

As in many polarized cells, spindle alignment in yeast is essential and cell cycle regulated. A key step that governs spindle alignment is the selective binding of the Kar9 protein to only one of the two spindle pole bodies (SPBs). It has been suggested that cyclin-dependent kinase Cdc28, in complex with cyclin Clb4, associates only with the SPB in the mother cell and so prevents Kar9 binding to this SPB. However, here we show that the nonoverexpressed Clb4 associates with the budward-directed SPB through Kar9. Cdc28-Clb4 then uses Kar9 as a carrier to move from this SPB to the plus ends of astral microtubules, where Cdc28-Clb4 regulates the interactions between microtubule ends and subdomains of the bud cortex. In the absence of Cdc28-Clb4 activity (G1/S phase), astral microtubules interact with the bud tip in a manner dependent on actin, Myo2, and Kar9. Coincidentally with reaching the bud cortex in S phase, Cdc28-Clb4 facilitates the dissociation of the microtubule bud tip interaction and their capture by the bud neck. This transition prevents the preanaphase spindle from becoming prematurely pulled into the bud. Thus, Cdc28-Clb4 facilitates spindle alignment by regulating the interaction of astral microtubules with subdomains of the bud cortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tipping the spindle into the right position

293 The Rockefeller University Press $30.00 J. Cell Biol. Vol. 213 No. 3 293–295 www.jcb.org/cgi/doi/10.1083/jcb.201604075 The mitotic spindle is a complex molecular machine that rapidly remodels a mother cell to create two daughter cells during cell division. The best known function of the spindle microtubules and associated proteins is to provide the tracks and trains that segregate the chrom...

متن کامل

Yeast GSK-3 kinase regulates astral microtubule function through phosphorylation of the microtubule-stabilizing kinesin Kip2

The S. cerevisiae kinesin Kip2 stabilises astral microtubules (MTs) and facilitates spindle positioning through transport of MT-associated proteins, such as the yeast CLIP-170 homologue Bik1, dynein and the adenomatous-polyposis-coli-related protein Kar9 to the plus ends of astral MTs. Here, we show that Kip2 associates with its processivity factor Bim1, the yeast homologue of the plus-end-trac...

متن کامل

Yeast GSK-3 kinase regulates astral microtubule function via phosphorylation of the microtubule-stabilizing kinesin Kip2

The S. cerevisiae kinesin Kip2 stabilises astral microtubules and facilitates spindle positioning through transport of microtubule-associated proteins, such as the yeast CLIP-170 homologue Bik1, dynein and the Adenomatous Polyposis Colirelated protein Kar9 to the plus ends of astral microtubules. Here, we show that Kip2 associates physically with its processivity factor Bim1, the yeast homologu...

متن کامل

Regulated offloading of cytoplasmic dynein from microtubule plus ends to the cortex.

Cytoplasmic dynein mediates spindle orientation from the cell cortex through interactions with astral microtubules, but neither the mechanism governing its cortical targeting nor the regulation thereof is well understood. Here we show that yeast dynein offloads from microtubule plus ends to the daughter cell cortex. Mutants with an engineered peptide inserted between the tail domain and the mot...

متن کامل

A mitotic SKAP isoform regulates spindle positioning at astral microtubule plus ends

The Astrin/SKAP complex plays important roles in mitotic chromosome alignment and centrosome integrity, but previous work found conflicting results for SKAP function. Here, we demonstrate that SKAP is expressed as two distinct isoforms in mammals: a longer, testis-specific isoform that was used for the previous studies in mitotic cells and a novel, shorter mitotic isoform. Unlike the long isofo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 18 14  شماره 

صفحات  -

تاریخ انتشار 2004